DAG: example_python_operator

schedule: None


example_python_operator

Toggle wrap
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# -*- coding: utf-8 -*-
#
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

from __future__ import print_function

import time
from builtins import range
from pprint import pprint

from airflow.utils.dates import days_ago

from airflow.models import DAG
from airflow.operators.python_operator import PythonOperator

args = {
    'owner': 'Airflow',
    'start_date': days_ago(2),
}

dag = DAG(
    dag_id='example_python_operator',
    default_args=args,
    schedule_interval=None,
    tags=['example']
)


# [START howto_operator_python]
def print_context(ds, **kwargs):
    pprint(kwargs)
    print(ds)
    return 'Whatever you return gets printed in the logs'


run_this = PythonOperator(
    task_id='print_the_context',
    provide_context=True,
    python_callable=print_context,
    dag=dag,
)
# [END howto_operator_python]


# [START howto_operator_python_kwargs]
def my_sleeping_function(random_base):
    """This is a function that will run within the DAG execution"""
    time.sleep(random_base)


# Generate 5 sleeping tasks, sleeping from 0.0 to 0.4 seconds respectively
for i in range(5):
    task = PythonOperator(
        task_id='sleep_for_' + str(i),
        python_callable=my_sleeping_function,
        op_kwargs={'random_base': float(i) / 10},
        dag=dag,
    )

    run_this >> task
# [END howto_operator_python_kwargs]